By Topic

Designing an energy-efficient cloud network [Invited]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kantarci, B. ; Sch. of Electr. Eng. & Comput. Sci., Univ. of Ottawa, Ottawa, ON, Canada ; Mouftah, H.T.

Cloud computing services are mainly hosted in remote data centers (DCs) where high performance servers and high capacity storage systems are located. Moving the services to distant servers can help handling the energy bottleneck of the information and communication technologies by leading to significant power savings at the local computing resources, which on the other hand increases the energy consumption of the transport network and the DCs. In this paper, we propose mixed-integer-linear-programming- (MILP-) based provisioning models to guarantee either minimum delayed or maximum power-saving cloud services where high performance DCs are assumed to be located at the core nodes of an IP-over-wavelength division multiplexing network. We further propose heuristics, namely, delay-minimized provisioning and power-minimized provisioning, each of which mimics the behavior of the benchmark MILP formulation. Through numerical results, we show that power savings can be attained at the expense of increased propagation delays. Hence, we finally propose the delay- and power-minimized provisioning (DePoMiP), which aims to minimize the propagation delay, maximize the power savings in the transport network and minimize the power consumption overhead introduced to the DCs. Simulation results verify that DePoMiP achieves low-delay and low-power provisioning in an environment which is dominated by the cloud services.

Published in:

Optical Communications and Networking, IEEE/OSA Journal of  (Volume:4 ,  Issue: 11 )