By Topic

Decentralized Hypothesis Testing in Wireless Sensor Networks in the Presence of Misbehaving Nodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Soltanmohammadi, E. ; Sch. of Electr. Eng. & Comput. Sci., Louisiana State Univ., Baton Rouge, LA, USA ; Orooji, M. ; Naraghi-Pour, M.

Wireless sensor networks are prone to node misbehavior arising from tampering by an adversary (Byzantine attack), or due to other factors such as node failure resulting from hardware or software degradation. In this paper, we consider the problem of decentralized detection in wireless sensor networks in the presence of one or more classes of misbehaving nodes. Binary hypothesis testing is considered where the honest nodes transmit their binary decisions to the fusion center (FC), while the misbehaving nodes transmit fictitious messages. The goal of the FC is to identify the misbehaving nodes and to detect the state of nature. We identify each class of nodes with an operating point (false alarm and detection probabilities) on the receiver operating characteristic (ROC) curve. Maximum likelihood estimation of the nodes' operating points is then formulated and solved using the expectation maximization (EM) algorithm with the nodes' identities as latent variables. The solution from the EM algorithm is then used to classify the nodes and to solve the decentralized hypothesis testing problem. Numerical results compared with those from the reputation-based schemes show a significant improvement in both classification of the nodes and hypothesis testing results. We also discuss an inherent ambiguity in the node classification problem which can be resolved if the honest nodes are in majority.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:8 ,  Issue: 1 )