Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Matching Composite Sketches to Face Photos: A Component-Based Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hu Han ; Dept. of Comput. Sci. & Eng., Michigan State Univ., East Lansing, MI, USA ; Klare, B.F. ; Bonnen, K. ; Jain, A.K.

The problem of automatically matching composite sketches to facial photographs is addressed in this paper. Previous research on sketch recognition focused on matching sketches drawn by professional artists who either looked directly at the subjects (viewed sketches) or used a verbal description of the subject's appearance as provided by an eyewitness (forensic sketches). Unlike sketches hand drawn by artists, composite sketches are synthesized using one of the several facial composite software systems available to law enforcement agencies. We propose a component-based representation (CBR) approach to measure the similarity between a composite sketch and mugshot photograph. Specifically, we first automatically detect facial landmarks in composite sketches and face photos using an active shape model (ASM). Features are then extracted for each facial component using multiscale local binary patterns (MLBPs), and per component similarity is calculated. Finally, the similarity scores obtained from individual facial components are fused together, yielding a similarity score between a composite sketch and a face photo. Matching performance is further improved by filtering the large gallery of mugshot images using gender information. Experimental results on matching 123 composite sketches against two galleries with 10,123 and 1,316 mugshots show that the proposed method achieves promising performance (rank-100 accuracies of 77.2% and 89.4%, respectively) compared to a leading commercial face recognition system (rank-100 accuracies of 22.8% and 52.0%) and densely sampled MLBP on holistic faces (rank-100 accuracies of 27.6% and 10.6%). We believe our prototype system will be of great value to law enforcement agencies in apprehending suspects in a timely fashion.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:8 ,  Issue: 1 )
Biometrics Compendium, IEEE