Cart (Loading....) | Create Account
Close category search window
 

Design and Analysis of Brushless Doubly Fed Reluctance Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Knight, A.M. ; Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, AB, Canada ; Betz, R.E. ; Dorrell, D.G.

Brushless doubly fed reluctance machines (BDFRMs) are a class of machines that may be controlled using a power converter that has a rating lower than the total power rating of the machine. The attractive properties of these machines have, in the past, been offset by low power density and efficiency when compared to other types of machines. Recent advances have shown that, when well designed, these machines are, in fact, capable of operation at high torque density and efficiency. However, little guidance on how to design these machines is available in the literature. This paper presents analytical approaches to design a BDFRM with desirable qualities and the use of time-stepped finite-element analysis to validate the results of the design process.

Published in:

Industry Applications, IEEE Transactions on  (Volume:49 ,  Issue: 1 )

Date of Publication:

Jan.-Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.