Cart (Loading....) | Create Account
Close category search window
 

Self-Alignment Mechanisms for Assistive Wearable Robots: A Kinetostatic Compatibility Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cempini, M. ; Biorobot. Inst., Scuola Super. di Studi Univ. e di Perfezionamento Sant'Anna, Pisa, Italy ; De Rossi, S.M.M. ; Lenzi, T. ; Vitiello, N.
more authors

The field of wearable robotics is gaining momentum thanks to its potential application in rehabilitation engineering, assistive robotics, and power augmentation. These devices are designed to be used in direct contact with the user to aid with movement or increase the power of specific skeletal joints. The design of the so-called physical human-robot interface is critical, since it determines not only the efficacy of the robot but the kinematic compatibility of the device with the human skeleton and the degree of adaptation to different anthropometries as well. Failing to deal with these problems causes misalignments between the robot and the user joint. Axes misalignment leads to the impossibility of controlling the torque effectively transmitted to the user joint and causes undesired loading forces on articulations and soft tissues. In this paper, we propose a general analytical method for the design of exoskeletons able to assist human joints without being subjected to misalignment effects. This method is based on a kinetostatic analysis of a coupled mechanism (robot-human skeleton) and can be applied in the design of self-aligning mechanisms. The method is exemplified in the design of an assistive robotic chain for a two-degree-of-freedom (DOF) human articulation.

Published in:

Robotics, IEEE Transactions on  (Volume:29 ,  Issue: 1 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.