By Topic

A 65 nm 32 b Subthreshold Processor With 9T Multi-Vt SRAM and Adaptive Supply Voltage Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lutkemeier, S. ; Center of Excellence Cognitive Interaction Technol., Bielefeld Univ., Bielefeld, Germany ; Jungeblut, T. ; Berge, H.K.O. ; Aunet, S.
more authors

An energy-efficient SoC with 32 b subthreshold RISC processor cores, 32 kB conventional cache memory, and 9T ultra-low voltage (ULV) SRAM based on a flexible and extensible architecture was fabricated on a 2.7 mm2 test chip in 65 nm low power CMOS. The processor cores are based on a custom standard cell library that was designed using a multiobjective approach to optimize noise margins, switching energy, and propagation delay simultaneously. The cores operate over a supply voltage range from 200 mV (best samples) to 1.2 V with clock frequencies from 10 kHz to 94 MHz at room temperature. The lowest energy consumption per cycle of 9.94 pJ is observed at 325 mV and 133 kHz. A 2 kb ULV SRAM macro achieves minimum energy per operation at averages of 321 mV (0.030 σ/μ), 567 fJ (0.037 σ/μ), and 730 kHz (0.184 σ/μ), for equal number of 32 b read/write operations. The off-chip performance and power management subsystem provides dynamic voltage and frequency scaling (DVFS) combined with an adaptive supply voltage generation for dynamic PVT compensation.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:48 ,  Issue: 1 )