By Topic

Multichannel Weighted Speech Classification System for Prediction of Major Depression in Adolescents

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kuan Ee Brian Ooi ; Sch. of Electr. & Comput. Eng., R. Melbourne Inst. of Technol., Melbourne, VIC, Australia ; Margaret Lech ; Nicholas B. Allen

Early identification of adolescents at high imminent risk for clinical depression could significantly reduce the burden of the disease. This study demonstrated that acoustic speech analysis and classification can be used to determine early signs of major depression in adolescents, up to two years before they meet clinical diagnostic criteria for the full-blown disorder. Individual contributions of four different types of acoustic parameters [prosodic, glottal, Teager's energy operator (TEO), and spectral] to depression-related changes of speech characteristics were examined. A new computational methodology for the early prediction of depression in adolescents was developed and tested. The novel aspect of this methodology is in the introduction of multichannel classification with a weighted decision procedure. It was observed that single-channel classification was effective in predicting depression with a desirable specificity-to-sensitivity ratio and accuracy higher than chance level only when using glottal or prosodic features. The best prediction performance was achieved with the new multichannel method, which used four features (prosodic, glottal, TEO, and spectral). In the case of the person-based approach with two sets of weights, the new multichannel method provided a high accuracy level of 73% and the sensitivity-to-specificity ratio of 79%/67% for predicting future depression.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:60 ,  Issue: 2 )