By Topic

Toward Detection and Localization of Instruments in Minimally Invasive Surgery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Allan, M. ; Dept. of Comput. Sci., Univ. Coll. London, London, UK ; Ourselin, S. ; Thompson, S. ; Hawkes, D.J.
more authors

Methods for detecting and localizing surgical instruments in laparoscopic images are an important element of advanced robotic and computer-assisted interventions. Robotic joint encoders and sensors integrated or mounted on the instrument can provide information about the tool's position, but this often has inaccuracy when transferred to the surgeon's point of view. Vision sensors are currently a promising approach for determining the position of instruments in the coordinate frame of the surgical camera. In this study, we propose a vision algorithm for localizing the instrument's pose in 3-D leaving only rotation in the axis of the tool's shaft as an ambiguity. We propose a probabilistic supervised classification method to detect pixels in laparoscopic images that belong to surgical tools. We then use the classifier output to initialize an energy minimization algorithm for estimating the pose of a prior 3-D model of the instrument within a level set framework. We show that the proposed method is robust against noise using simulated data and we perform quantitative validation of the algorithm compared to ground truth obtained using an optical tracker. Finally, we demonstrate the practical application of the technique on in vivo data from minimally invasive surgery with traditional laparoscopic and robotic instruments.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:60 ,  Issue: 4 )