By Topic

Ultrasensitive Plasmonic Imaging Sensor Based on Graphene and Silicon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Maharana, P.K. ; Sch. of Basic Sci., Indian Inst. of Technol. Bhubaneswar, Bhubaneswar, India ; Srivastava, T. ; Jha, R.

We propose an ultrasensitive, accurate, and cost effective surface plasmon resonance sensor based on graphene-on-aluminum and silicon. An angular interrogation method has been theoretically used to study the performance of the sensor in terms of imaging sensitivity, which quantifies the rate of change of slopes of the reflectance curve close to resonance angle. Different optimized design parameters have been reported. It is found that the imaging sensitivity of an aluminum-based sensor is 750% greater than gold, the most widely used SPR active metal. However, graphene-on-aluminum not only prevents the aluminum oxidation but, a monolayer of graphene-on-aluminum exhibits ~400% larger imaging sensitivity compared to that of a conventional gold-film based SPR sensor.

Published in:

Photonics Technology Letters, IEEE  (Volume:25 ,  Issue: 2 )