By Topic

Distributed Illumination Control With Local Sensing and Actuation in Networked Lighting Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
David Caicedo ; Philips Research, Eindhoven, The Netherlands ; Ashish Pandharipande

We consider the problem of illumination control in a networked lighting system wherein luminaires have local sensing and actuation capabilities. Each luminaire: 1) consists of a light-emitting diode (LED) based light source dimmable by a local controller; 2) is actuated based on sensing information from a presence sensor, that determines occupant presence, and a light sensor, that measures illuminance, within their respective fields of view; and 3) a communication module to exchange control information within a local neighborhood. We consider distributed illumination control in such an intelligent lighting system to achieve presence-adaptive and daylight-integrated spatial illumination rendering. The rendering is specified as target values at the light sensors, and under these constraints, a local controller has to determine the optimum dimming levels of its associated LED luminaire so that the power consumed in rendering is minimized. The formulated optimization problem is a distributed linear programming problem with constraints on exchanging control information within a neighborhood. A distributed optimization algorithm is presented to solve this problem and its stability and convergence are studied. Sufficient conditions, in terms of parameter selection, under which the algorithm can achieve a feasible solution are provided. The performance of the algorithm is evaluated in an indoor office setting in terms of achieved illuminance rendering and power savings.

Published in:

IEEE Sensors Journal  (Volume:13 ,  Issue: 3 )