Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Two-Mass MEMS Velocity Sensor: Internal Feedback Loop Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alshehri, A. ; Sch. of Electron. & Comput. Sci., Univ. of Southampton, Southampton, UK ; Kraft, M. ; Gardonio, P.

This paper presents theoretical and experimental results about the design of an internal feedback loop in a new capacitive micro-electro-mechanical-system velocity sensor. The sensor comprises two mass-spring inertial sensing systems connected in a series, termed the principal and secondary systems. The secondary system output is fed to an electrostatic actuator that acts between the sensor frame and the proof mass of the principal system. The aim of this internal feedback loop is to generate a sky-hook damping effect on the principal system, so that, in the frequency band of interest, the output of the sensor is proportional to the base velocity. The sensor is fabricated on a silicon-on-isolator wafer. The sensor interface and the controller are implemented on a printed circuit board. The design of the control loop is carried out offline using measured frequency response functions for the displacements of the two proof masses with respect to: 1) the base acceleration, and 2) the voltage signal driving the electrostatic actuator. This paper shows that, below 1 kHz, the measured output signal of the closed loop sensor is proportional to the velocity of the base, and above the fundamental resonance, the output signal rolls off with a phase lag of -90°.

Published in:

Sensors Journal, IEEE  (Volume:13 ,  Issue: 3 )