By Topic

Fuzzy support vector machine based on non-equilibrium data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Da-Zeng Tian ; Fac. of Phys. Sci. & Technol., Hebei Univ., Baoding, China ; Gui-Bing Peng ; Ming-Hu Ha

Fuzzy support vector machine (FSVM), whose membership function is based on class centers, can effectively solve the problem that the traditional support vector machine (SVM) is sensitive to the noises and outliers. However, FSVM assigns smaller memberships to support vectors, which may decrease the effects of these support vectors upon the construction of classification hyperplane. At the same time, FSVM has some disadvantages in dealing with the non-equilibrium data classification. Therefore, a novel method to determine membership function is proposed, and a new FSVM based on non-equilibrium data is constructed. Experiments show that the new FSVM can effectively reduce the misclassification rates produced by the class with fewer samples in dealing with non-equilibrium data classification problem. Therefore, the proposed FSVM may make the misclassification rates upon two classes approximately equal.

Published in:

Machine Learning and Cybernetics (ICMLC), 2012 International Conference on  (Volume:2 )

Date of Conference:

15-17 July 2012