By Topic

Support Vector Machine Classification Based on Correlation Prototypes Applied to Bone Age Assessment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Markus Harmsen ; Department of Medical Informatics , RWTH Aachen University, Aachen, Germany ; Benedikt Fischer ; Hauke Schramm ; Thomas Seidl
more authors

Bone age assessment (BAA) on hand radiographs is a frequent and time-consuming task in radiology. We present a method for (semi)automatic BAA which is done in several steps: 1) extract 14 epiphyseal regions from the radiographs; 2) for each region, retain image features using the image retrieval in medical application framework; 3) use these features to build a classifier model (training phase); 4) evaluate performance on cross-validation schemes (testing phase); 5) classify unknown hand images (application phase). In this paper, we combine a support vector machine (SVM) with cross correlation to a prototype image for each class. These prototypes are obtained choosing one random hand per class. A systematic evaluation is presented comparing nominal- and real-valued SVM with k nearest neighbor classification on 1097 hand radiographs of 30 diagnostic classes (0-19 years). Mean error in age prediction is 1.0 and 0.83 years for 5-NN and SVM, respectively. Accuracy of nominal- and real-valued SVM based on six prominent regions (prototypes) is 91.57% and 96.16%, respectively, for accepting about two years age range.

Published in:

IEEE Journal of Biomedical and Health Informatics  (Volume:17 ,  Issue: 1 )