By Topic

W-Tree Indexing for Fast Visual Word Generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Miaojing Shi ; Key Lab. of Machine Perception (Minister of Educ.), Peking Univ., Beijing, China ; Ruixin Xu ; Dacheng Tao ; Chao Xu

The bag-of-visual-words representation has been widely used in image retrieval and visual recognition. The most time-consuming step in obtaining this representation is the visual word generation, i.e., assigning visual words to the corresponding local features in a high-dimensional space. Recently, structures based on multibranch trees and forests have been adopted to reduce the time cost. However, these approaches cannot perform well without a large number of backtrackings. In this paper, by considering the spatial correlation of local features, we can significantly speed up the time consuming visual word generation process while maintaining accuracy. In particular, visual words associated with certain structures frequently co-occur; hence, we can build a co-occurrence table for each visual word for a large-scale data set. By associating each visual word with a probability according to the corresponding co-occurrence table, we can assign a probabilistic weight to each node of a certain index structure (e.g., a KD-tree and a K-means tree), in order to re-direct the searching path to be close to its global optimum within a small number of backtrackings. We carefully study the proposed scheme by comparing it with the fast library for approximate nearest neighbors and the random KD-trees on the Oxford data set. Thorough experimental results suggest the efficiency and effectiveness of the new scheme.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 3 )