By Topic

Control Loop Design for a PFC Boost Converter With Ripple Steering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fariborz Musavi ; Delta-Q Technologies Corporation, Burnaby, Canada ; Murray Edington ; Wilson Eberle ; William G. Dunford

In this paper, an average switch model approach to the power stage modeling, feedback compensation network design, and dynamic analysis of power factor correction (PFC) boost converters with ripple steering is presented. The model is expressed by the derivation of power stage transfer functions for a conventional boost converter and then followed by the derivation of the power stage transfer functions for a boost converter with ripple steering. A detailed design procedure and comparison of both voltage and current feedback loops are given in a conventional PFC boost converter and boost converter with ripple steering. Experimental and simulation results of a prototype boost converter converting universal ac input voltage to 400 V dc at 1.6 kW are given to verify the proof of concept and analytical work reported. The experimental results demonstrate that the model can correctly predict the steady-state behavior of a continuous conduction mode PFC boost converter with ripple steering.

Published in:

IEEE Transactions on Industry Applications  (Volume:49 ,  Issue: 1 )