By Topic

Single phase induction motor speed control using frog-jumping algorithm technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ali H. Ahmad ; Electrical Engineering Dept, Coll. Of Engineering, University of Mosul-Iraq ; Ali Abbawi

An adjustable speed single phase induction motors are widely used in domestic applications and industries. It is difficult to get such a single phase induction motor practically. The present work deals with the analysis and design of a speed control for a single phase induction motor. There are several methods which may be used to control the speed such a motor: voltage control, frequency control and a voltage to frequency control, which is widely used in this application. Most of the previous methods are suffering from certain problems, e.g narrow speed range, starting problems, the low efficiency of the motor. Here a novel method is suggested to use for controller design. the suggested method computed the best values for the frequency and the voltage for any desired reference speed. The simulated open-loop system as well as the closed-loop one are analyzed and the result show that the actual speed is tracking the desired speed and the deference between the reference speed and actual is acceptable (less than 2%).

Published in:

Control, Instrumentation and Automation (ICCIA), 2011 2nd International Conference on

Date of Conference:

27-29 Dec. 2011