Cart (Loading....) | Create Account
Close category search window
 

Combining instruction set simulation and WCET analysis for embedded software performance estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Stattelmann, S. ; FZI Forschungszentrum Inf., Karlsruhe, Germany ; Ottlik, S. ; Viehl, A. ; Bringmann, O.
more authors

Simulation-based approaches to evaluate the functional and non-functional properties of embedded software are in widespread industrial use for design space exploration and virtual prototyping. As simulation performance is usually the main concern for these tools, they often lack an accurate timing model of the underlying processor. On the other hand, tools aimed at the worst-case execution time (WCET) analysis of embedded software contain accurate models for the timing behavior of embedded processors. Yet, these accurate processor models are only used to determine the worst-case path through the analyzed program. This paper proposes the combination of existing tools from both domains. The combination of an a priori analysis of machine code with a dynamic selection of basic block timing estimates during the execution of the program in a high-speed instruction set simulator (ISS) reduces the simulation overhead for cycle-accurate timing estimation. By keeping track of the execution history during execution of the analyzed software, the full accuracy of the offline performance model can be used without introducing pessimism to the simulation-based performance estimates. As most of the timing estimation is done before the simulation, only a slight decrease in simulation performance of the high-speed ISS can be expected.

Published in:

Industrial Embedded Systems (SIES), 2012 7th IEEE International Symposium on

Date of Conference:

20-22 June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.