By Topic

Model-driven virtual prototyping for real-time simulation of distributed embedded systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zimmermann, J. ; FZI Karlsruhe, Karlsruhe, Germany ; Stattelmann, S. ; Viehl, A. ; Bringmann, O.
more authors

In this paper, we present an approach to generate a virtual execution platform in SystemC to advance the development of software-intensive real-time embedded systems including early validation and verification. These virtual execution platforms allow the execution of embedded software with strict consideration of the underlying hardware platform configuration in order to reduce subsequent development costs and to allow a short time-to-market by tailoring and exploring distributed embedded hardware and software architectures. Starting from abstract UML-based descriptions of the software and hardware architecture as well as integrated abstractions of legacy code, model transformation techniques are used during the model-driven generation process. The combination of source code level timing and power annotations obtained from binary legacy code analysis with a layered approach for TLM-based simulation of non-functional properties in a common virtual prototyping methodology allows a fast and accurate simulation of the embedded system model. We further show the synchronization and co-simulation of the embedded hardware/software with vehicle dynamics including human-in-the-loop. To substantiate our allegation we present experimental results expressing the high performance and accuracy of the elaborated virtual prototyping framework as well as its applicability within different application areas and use cases.

Published in:

Industrial Embedded Systems (SIES), 2012 7th IEEE International Symposium on

Date of Conference:

20-22 June 2012