By Topic

Opportunistic hierarchical classification for power optimization in wearable movement monitoring systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Francesco Fraternali ; Department of Electronic Informatic and System, University of Bologna, Italy ; Mahsan Rofouei ; Nabil Alshurafa ; Hassan Ghasemzadeh
more authors

Patient monitoring systems are becoming increasingly important in accurately diagnosing and treating growing worldwide chronic conditions especially the obesity epidemic. The ubiquitous nature of wearable sensors, such as the readily available embedded accelerometers in smart phones, provides physicians with an opportunity to remotely monitor their patient's daily activity. There have been several developments in the area of activity recognition using wearable sensors. However, due to power constraints, resource efficient algorithms are necessary in order to perform accurate realtime activity recognition while consuming minimal energy. In this paper, we present a two-tier architecture for optimizing power consumption in such systems. While the first tier relies on a hierarchical classification approach, the second one manages the activation and deactivation of the classification system. We demonstrate this using a series of binary Support Vector Machine classifiers. The proposed approach, however, is classifier independent. Experimenting with subjects performing different daily activities such as walking, going upstairs and down-stairs, standing and sitting, our approach achieves a power savings of 87%, while maintaining 92% classification accuracy.

Published in:

7th IEEE International Symposium on Industrial Embedded Systems (SIES'12)

Date of Conference:

20-22 June 2012