Cart (Loading....) | Create Account
Close category search window
 

A High-Performance SPWM Controller for Three-Phase UPS Systems Operating Under Highly Nonlinear Loads

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
1 Author(s)
Tamyurek, B. ; Dept. of Electr. & Electron. Eng., Eskisehir Osmangazi Univ., Eskisehir, Turkey

This paper presents the design of a high-performance sinusoidal pulsewidth modulation (SPWM) controller for three-phase uninterruptible power supply (UPS) systems that are operating under highly nonlinear loads. The classical SPWM method is quite effective in controlling the RMS magnitude of the UPS output voltages. However, it is not good enough in compensating the harmonics and the distortion caused specifically by the nonlinear currents drawn by the rectifier loads. The distortion becomes more severe at high power where the switching frequency has to be reduced due to the efficiency concerns. This study proposes a new design strategy that overcomes the limitations of the classical RMS control. It adds inner loops to the closed-loop control system effectively that enables successful reduction of harmonics and compensation of distortion at the outputs. Simulink is used to analyze, develop, and design the controller using the state-space model of the inverter. The controller is implemented in the TMS320F2808 DSP by Texas Instruments, and the performance is evaluated experimentally using a three-phase 10 kVA transformer isolated UPS under all types of load conditions. In conclusion, the experimental results demonstrate that the controller successfully achieves the steady-state RMS voltage regulation specifications as well as the total harmonic distortion and the dynamic response requirements of major UPS standards.

Published in:

Power Electronics, IEEE Transactions on  (Volume:28 ,  Issue: 8 )

Date of Publication:

Aug. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.