Cart (Loading....) | Create Account
Close category search window
 

A Systematic Approach for Ranking Distribution Systems Fault Location Algorithms and Eliminating False Estimates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lotfifard, S. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Central Florida, Orlando, FL, USA ; Kezunovic, M. ; Mousavi, M.J.

The need for distribution reliability enhancement in the age of smart grids requires reliable methods for locating faults on distribution systems leading to a faster service restoration and maintenance cost optimization. Given the numerous fault location methods, one faces the challenge of objectively evaluating and selecting the most proper method. In this paper, a two-step approach is proposed and discussed for ranking available fault location methods that takes into account application requirements and modeling limitations and uncertainties. The ranking method formulated as uncertainty analysis utilizes 2 n + 1 point estimation to calculate the statistical moments of the fault location estimation error. These moments plugged into the Chebyshev's inequality provide a basis for ranking the fault location method. The selected method may still suffer from multiple fault location estimations. To address this caveat, voltage sag characteristics reported by few intelligent electronic devices (IEDs) along the feeder are utilized. The number and location of these IEDs are determined through an optimal approach specifically formulated for this problem. The proposed two-step ranking methodology and the IED placement optimization approach were implemented on a simulated distribution system and their effectiveness was demonstrated through a few select scenarios and case studies.

Published in:

Power Delivery, IEEE Transactions on  (Volume:28 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.