By Topic

Near-Field Electrospray Microprinting of Polymer-Derived Ceramics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hongxu Duan ; Dept. of Mech. & Aerosp. Eng., Univ. of Central Florida, Orlando, FL, USA ; Cheng Li ; Weiwei Yang ; Lojewski, B.
more authors

Ceramic microelectromechanical systems (MEMS) sensors are potentially game-changing devices in many applications in high-temperature and corrosive environments, where the use of conventional MEMS materials such as silicon is prohibited. However, the microfabrication of ceramic MEMS devices remains a major technical challenge. Here, we report a method to directly print micro ceramic patterns using near-field electrospray (ES) of polymer-derived ceramics (PDCs). We demonstrated that the viscous ceramic precursor liquids can be printed reliably without any clogging problem. The spray self-expansion due to Coulombic repulsion force among charged droplets can be suppressed by decreasing the droplet residence time in space. A spray expansion model is used to predict the line width, and the results are in decent agreement with the experiments. We demonstrated a 1-D printed polymer feature as narrow as 35 μm and a micro pentagram pattern. Moreover, after the pyrolysis of PDC at 1100 °C in nitrogen, amorphous alloys of silicon, carbon, and nitrogen (SiCN) are obtained. The samples show good integrity and adhesion to the substrate. The near-field ES PDC printing can become a useful addition to the toolbox of high-temperature MEMS.

Published in:

Microelectromechanical Systems, Journal of  (Volume:22 ,  Issue: 1 )