By Topic

PAPR Reduction in SC-FDMA by Pulse Shaping Using Parametric Linear Combination Pulses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Azurdia-Meza, C.A. ; Electron. & Radio Eng. Dept., Kyung Hee Univ., Yongin, South Korea ; Kyujin Lee ; Kyesan Lee

A linear combination between two intersymbol interference (ISI) free parametric linear pulses was proposed in order to obtain a new family of Nyquist pulses. The new family of pulses is utilized for pulse shaping to reduce peak-to-average power ratio (PAPR). The proposed pulse contains a new design parameter, μ, giving an additional degree of freedom to minimize PAPR for a given roll-off factor, α, and transmission scheme. While keeping the same bandwidth, the frequency responses of the proposed pulses differ with different values of the parameter μ for a fixed roll-off factor. Simulations showed that PAPR reduction is achieved when compared to that of other existing filters for the interleaved subcarrier mode of single carrier frequency division multiple access (SC-FDMA).

Published in:

Communications Letters, IEEE  (Volume:16 ,  Issue: 12 )