By Topic

Critical Current Density and Temperature Dependence of Nb-Al Oxide-Nb Junction Resistance and Implications for Room Temperature Characterization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kleinsasser, A. ; Caltech Jet Propulsion Lab., Pasadena, CA, USA ; Chui, T. ; Bumble, B. ; Ladizinsky, E.

Room temperature junction resistance measurements are commonly used for screening Josephson-based circuits because testing is much easier than at cryogenic temperatures and can even be carried out at the wafer level. The value of ambient testing depends on the existence of a strong correspondence between the measured resistance at room temperature and the resistance and critical current obtained at the ultimate operating temperature. We have systematically studied the temperature dependence of junction resistance in order to quantify the emergence, with increasing critical current density, of parasitic contributions from non-uniform currents flowing in the Nb films, which tend to limit the value of room temperature screening. We will describe our measurements and our approach to correcting for these parasitic effects.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:23 ,  Issue: 3 )