By Topic

Stable Discretization of the Electric-Magnetic Field Integral Equation With the Taylor-Orthogonal Basis Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ubeda, E. ; Signal Theor. & Commun., UPC-Barcelona, Barcelona, Spain ; Tamayo, J.M. ; Rius, J.M. ; Heldring, A.

We present two new facet-oriented discretizations in method of moments (MoM) of the electric-magnetic field integral equation (EMFIE) with the recently proposed Taylor-orthogonal (TO) and divergence-Taylor-orthogonal (div-TO) basis functions. These new schemes, which we call stable, unlike the recently published divergence TO discretization of the EMFIE, which we call standard, result in impedance matrices with stable condition number in the very low frequency regime. More importantly, we show for sharp-edged objects of moderately small dimensions that the computed RCS with the stable EMFIE schemes show improved accuracy with respect to the standard EMFIE scheme. The computed RCS for the sharp-edged objects tested becomes much closer to the RCS computed with the RWG discretization of the electric-field integral equation (EFIE), which is well-known to provide good RCS accuracy in these cases. To provide best assessment on the relative performance of the several implementations, we have cancelled the main numerical sources of error in the RCS computation: (i) we implement the EMFIE so that the non-null static quasi-solenoidal current does not contribute in the far-field computation; (ii) we compute with machine-precision the strongly singular Kernel-contributions in the impedance elements with the direct evaluation method.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:61 ,  Issue: 3 )