Cart (Loading....) | Create Account
Close category search window
 

Quantum Dot Passively Mode-Locked Laser Optimization for High-Power and Short Pulses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tianhong Xu ; Dipt. di Elettron. e Telecomun., Politec. di Torino, Turin, Italy ; Bardella, P. ; Montrosset, I.

The performance optimization of monolithic two-section passively mode-locked quantum-dot lasers is investigated using the finite-difference traveling-wave model changing simultaneously the length of the saturable absorber and the cavity reflectivity. We demonstrate that, by properly choosing these two parameters, a reduction in the pulse width from 4.4 ps to 930 fs and an increase in the product of the peak power and the average power from 0.012 to 0.2 W2 were obtained. In addition, clear trends and design guidelines are extracted from the simulation results and explained.

Published in:

Photonics Technology Letters, IEEE  (Volume:25 ,  Issue: 1 )

Date of Publication:

Jan.1, 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.