Cart (Loading....) | Create Account
Close category search window
 

On-the-Fly Algorithms for Bisimulation Metrics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Comanici, G. ; Sch. of Comput. Sci., McGill Univ., Montreal, QC, Canada ; Panangaden, P. ; Precup, D.

We study the problem of determining approximate equivalences in Markov Decision Processes with rewards using bisimulation metrics. We provide an extension of the framework previously introduced in Ferns et al. (2004), which computes iteratively improving approximations to bisimulation metrics using exhaustive pairwise state comparisons. The similarity between states is determined using the Earth Mover's Distance, as extensively studied in optimization and machine learning. We address two computational limitations of the above framework: first, all pairs of states have to be compared at every iteration, and second, convergence is proven only under exact computations. We extend their work to incorporate "on-the-fly" methods, which allow computational effort to focus first on pairs of states where the impact is expected to be greater. We prove that a method similar to asynchronous dynamic programming converges to the correct value of the bisimulation metric. The second relaxation is based on applying heuristics to obtain approximate state comparisons, building on recent work on improved algorithms for computing Earth Mover's Distance. Finally, we show how this approach can be used to generate new algorithmic strategies, based on existing prioritized sweeping algorithms used for prediction and control in MDPs.

Published in:

Quantitative Evaluation of Systems (QEST), 2012 Ninth International Conference on

Date of Conference:

17-20 Sept. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.