By Topic

Automatically fast determining of feature number for ranking-based feature selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wang, Z. ; Sch. of Comput. Software, Tianjin Univ., Tianjin, China ; Sun, M. ; Jiang, J.

The proposed feature number determining method for the ranking-based feature selection problem builds a convex hull in high-dimensional space for each category in the training dataset and estimates the discriminative degree by calculating the overlapped proportion of these high-dimensional convex hulls. Normalising these discriminative degrees, an initial selected feature number can be determined, then a local optimal result is output by using the hill climbing algorithm. This approach reduces the time consumed by the existing many ranking-based feature selection methods. Classification results on three data sets using three major feature ranking and selection criteria and an SVM classifier show considerable improvement in time consumed of feature selection and comparable accuracy.

Published in:

Electronics Letters  (Volume:48 ,  Issue: 23 )