By Topic

Series-Connected IGBTs Using Active Voltage Control Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Lim, T.C. ; Dept. of Electron. & Electr. Eng., Univ. of Strathclyde, Glasgow, UK ; Williams, B.W. ; Finney, S.J. ; Palmer, P.R.

With series insulated-gate bipolar transistor (IGBT) operation, well-matched gate drives will not ensure balanced dynamic voltage sharing between the switching devices. Rather, it is IGBT parasitic capacitances, mainly gate-to-collector capacitance Cgc, that dominate transient voltage sharing. As Cgc is collector voltage dependant and is significantly larger during the initial turn-off transition, it dominates IGBT dynamic voltage sharing. This paper presents an active control technique for series-connected IGBTs that allows their dynamic voltage transition dVce/dt to adaptively vary. Both switch ON and OFF transitions are controlled to follow a predefined dVce/dt. Switching losses associated with this technique are minimized by the adaptive dv/dt control technique incorporated into the design. A detailed description of the control circuits is presented in this paper. Experimental results with up to three series devices in a single-ended dc chopper circuit, operating at various low voltage and current levels, are used to illustrate the performance of the proposed technique.

Published in:

Power Electronics, IEEE Transactions on  (Volume:28 ,  Issue: 8 )