Cart (Loading....) | Create Account
Close category search window
 

Arm Stiffness During Assisted Movement After Stroke: The Influence of Visual Feedback and Training

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Piovesan, D. ; Dept. of Phys. Med. & Rehabilitation, Northwestern Univ., Chicago, IL, USA ; Morasso, P. ; Giannoni, P. ; Casadio, M.

Spasticity and muscular hypertonus are frequently found in stroke survivors and may have a significant effect on functional impairment. These abnormal neuro-muscular properties, which are quantifiable by the net impedance of the hand, have a direct consequence on arm mechanics and are likely to produce anomalous motor paths. Literature studies quantifying limb impedance in stroke survivors have focused on multijoint static tasks and single joint movements. Despite this research, little is known about the role of sensory motor integration in post-stroke impedance modulation. The present study elucidates this role by integrating an evaluation of arm impedance into a robotically mediated therapy protocol. Our analysis had three specific objectives: 1) obtaining a reliable measure for the mechanical proprieties of the upper limb during robotic therapy; 2) investigating the effects of robot-assisted training and visual feedback on arm stiffness and viscosity; 3) determining if the stiffness measure and its relationship with either training or visual feedback depend on arm position, speed, and level of assistance. This work demonstrates that the performance improvements produced by minimally assistive robot training are associated with decreased viscosity and stiffness in stroke survivors' paretic arm and that these mechanical impedance components are partially modulated by visual feedback.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 3 )

Date of Publication:

May 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.