By Topic

Optimal Active Control and Optimization of a Wave Energy Converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abraham, E. ; Dept. of Aeronaut., Imperial Coll. London, London, UK ; Kerrigan, E.C.

This paper investigates optimal active control schemes applied to a point absorber wave energy converter within a receding horizon fashion. A variational formulation of the power maximization problem is adapted to solve the optimal control problem. The optimal control method is shown to be of a bang-bang type for a power takeoff mechanism that incorporates both linear dampers and active control elements. We also consider a direct transcription of the optimal control problem as a general nonlinear program. A variation of the projected gradient optimization scheme is formulated and shown to be feasible and computationally inexpensive compared to a standard NLP solver. Since the system model is bilinear and the cost function is not convex quadratic, the resulting optimization problem is not a quadratic program. Results will be compared with an optimal command latching method to demonstrate the improvement in absorbed power. All time domain simulations are generated under irregular sea conditions.

Published in:

Sustainable Energy, IEEE Transactions on  (Volume:4 ,  Issue: 2 )