By Topic

Empirical Processes, Typical Sequences, and Coordinated Actions in Standard Borel Spaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Maxim Raginsky ; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA

This paper proposes a new notion of typical sequences on a wide class of abstract alphabets (so-called standard Borel spaces), which is based on approximations of memoryless sources by empirical distributions uniformly over a class of measurable “test functions.” In the finite-alphabet case, we can take all uniformly bounded functions and recover the usual notion of strong typicality (or typicality under the total variation distance). For a general alphabet, however, this function class turns out to be too large, and must be restricted. With this in mind, we define typicality with respect to any Glivenko-Cantelli function class (i.e., a function class that admits a Uniform Law of Large Numbers) and demonstrate its power by giving simple derivations of the fundamental limits on the achievable rates in several source coding scenarios, in which the relevant operational criteria pertain to reproducing empirical averages of a general-alphabet stationary memoryless source with respect to a suitable function class.

Published in:

IEEE Transactions on Information Theory  (Volume:59 ,  Issue: 3 )