By Topic

SVM-Based Boosting of Active Learning Strategies for Efficient Domain Adaptation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Matasci, G. ; Inst. of Geomatics & Anal. of Risk, Univ. of Lausanne, Lausanne, Switzerland ; Tuia, D. ; Kanevski, M.

We propose a procedure that efficiently adapts a classifier trained on a source image to a target image with similar spectral properties. The adaptation is carried out by adding new relevant training samples with active queries in the target domain following a strategy specifically designed for the case where class distributions have shifted between the two acquisitions. In fact, the procedure consists of two nested algorithms. An active selection of the pixels to be labeled is performed on a set of candidates of the target image in order to select the most informative pixels. Along the inclusion of the pixels to the training set, the weights associated with these samples are iteratively updated using different criteria, depending on their origin (source or target image). We study this adaptation framework in combination with a SVM classifier accepting instance weights. Experiments on two VHR QuickBird images and on a hyperspectral AVIRIS image prove the validity of the proposed adaptive approach with respect to existing techniques not involving any adjustments to the target domain.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:5 ,  Issue: 5 )