Cart (Loading....) | Create Account
Close category search window

The Inherent Temporal Precision of Phoneme Transitions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Baghai-Ravary, L. ; Phonetics Lab., Univ. of Oxford, Oxford, UK

In natural speech, some phoneme transitions correspond to abrupt changes in the acoustic signal. Others are less clear-cut because the acoustic transition from one phoneme to the next is gradual. In this paper we determine the naturally occurring groups of phonemes (regardless of conventional phonetic categories) which show similar characteristics in such behavior. These data-driven groupings could be used in the design of decision-trees for context-dependent phoneme clustering, as used in large-vocabulary speech recognition and alignment systems, or during the design of speech databases for speech synthesis systems. We use 128 different Hidden Markov Model phoneme alignment systems and a large corpus of British English speech to assess the consistency with which different phoneme transitions can be identified. The phoneme transitions are grouped automatically so as to minimize the statistical differences in behavior between members of each group. In this way we derive two sets of phonemic classes, one for the first phoneme of each phoneme-to-phoneme transition, and another for the second. The grouping of the phonemes confirms that broad phonetic classes are a significant indicator of the accuracy with which boundaries can be identified, but there are a number of exceptions and some apparent sub-divisions and mergers of accepted phonetic classes. The automatic grouping of the second phonemes results in two singletons, /Z/ and /N/ (in SAMPA notation). Finally, statistics are presented which characterize the precision with which transitions between these automatic classes can be identified. These could provide weightings to be applied to different transitions to provide a more realistic assessment when evaluating the relative accuracies of different alignment systems.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:21 ,  Issue: 3 )

Date of Publication:

March 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.