By Topic

Time-Domain Single-Source Integral Equations for Analyzing Scattering From Homogeneous Penetrable Objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Felipe Valdes ; Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, MI, USA ; Francesco P. Andriulli ; Hakan Bagci ; Eric Michielssen

Single-source time-domain electric- and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis functions and a collocation testing procedure, thus allowing for a marching-on-in-time (MOT) solution scheme. Unlike dual-source formulations, single-source equations involve space-time domain operator products, for which spatial discretization techniques developed for standalone operators do not apply. Here, the spatial discretization of the single-source time-domain integral equations is achieved by using the high-order divergence-conforming basis functions developed by Graglia et al. alongside the high-order divergence- and quasi curl-conforming (DQCC) basis functions of Valdés et al. The combination of these two sets allows for a well-conditioned mapping from div- to curl-conforming function spaces that fully respects the space-mapping properties of the space-time operators involved. Numerical results corroborate the fact that the proposed procedure guarantees accuracy and stability of the MOT scheme.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:61 ,  Issue: 3 )