Cart (Loading....) | Create Account
Close category search window
 

Enhancing the Efficiency of Compact Patch Antennas Composed of Split-Ring Resonators by Using Lumped Capacitors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pucci, E. ; Dept. of Signals & Syst., Chalmers Univ. of Technol., Gothenburg, Sweden ; Rajo-Iglesias, E. ; Kehn, M.N.M. ; Quevedo-Teruel, O.

A new type of small patch antenna with low profile and enhanced radiation efficiency is proposed in this letter. The antenna is realized with a double layer of low-permittivity material (polypropylene, εr = 2.2). The lower layer is used for the feeding of the antenna, and split ring resonators (SRRs) are printed on top of the upper layer acting as radiating elements. The compactness is provided by shorting the rings to the ground plane with two metal pins. Although this antenna presented initially a dual band of operation, it has been demonstrated how the use of a lumped capacitor in the inner ring can increase the total radiation efficiency of the antenna performing a single-band response. Therefore, when the two original operation frequency bands coincide, a manufactured prototype of the antenna demonstrated a measured radiation efficiency of 73% that can be provided at the operation frequency of 1.29 GHz.

Published in:

Antennas and Wireless Propagation Letters, IEEE  (Volume:11 )

Date of Publication:

2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.