By Topic

Dynamic Service Provisioning in Elastic Optical Networks With Hybrid Single-/Multi-Path Routing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zuqing Zhu ; School of Information Science and Technology, University of Science and Technology of China, Hefei, China ; Wei Lu ; Liang Zhang ; Nirwan Ansari

Empowered by the optical orthogonal frequency-division multiplexing (O-OFDM) technology, flexible online service provisioning can be realized with dynamic routing, modulation, and spectrum assignment (RMSA). In this paper, we propose several online service provisioning algorithms that incorporate dynamic RMSA with a hybrid single-/multi-path routing (HSMR) scheme. We investigate two types of HSMR schemes, namely HSMR using online path computation (HSMR-OPC) and HSMR using fixed path sets (HSMR-FPS). Moreover, for HSMR-FPS, we analyze several path selection policies to optimize the design. We evaluate the proposed algorithms with numerical simulations using a Poisson traffic model and two mesh network topologies. The simulation results have demonstrated that the proposed HSMR schemes can effectively reduce the bandwidth blocking probability (BBP) of dynamic RMSA, as compared to two benchmark algorithms that use single-path routing and split spectrum. Our simulation results suggest that HSMR-OPC can achieve the lowest BBP among all HSMR schemes. This is attributed to the fact that HSMR-OPC optimizes routing paths for each request on the fly with considerations of both bandwidth utilizations and lengths of links. Our simulation results also indicate that the HSMR-FPS scheme that use the largest slots-over-square-of-hops first path-selection policy obtains the lowest BBP among all HSMR-FPS schemes. We then investigate the proposed algorithms' impacts on other network performance metrics, including network throughput and network bandwidth fragmentation ratio. To the best of our knowledge, this is the first attempt to consider dynamic RMSA based on both online path computation and offline path computation with various path selection policies for multipath provisioning in O-OFDM networks.

Published in:

Journal of Lightwave Technology  (Volume:31 ,  Issue: 1 )