By Topic

Design of Resilient Ethernet Ring Protection (ERP) Mesh Networks With Improved Service Availability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nurujjaman, M. ; Concordia Univ., Montréal, QC, Canada ; Sebbah, S. ; Assi, C.M.

Ethernet Ring Protection (ERP) has recently emerged to provide protection switching for Ethernet ring topologies with sub-50 ms failover capabilities. ERP's promise to provide protection in mesh packet transport networks positions Ethernet as a prominent competitor to conventional SONET/SDH and as the technology of choice for carrier networks. Higher service availability, however, in ERP has been challenged by the issue of network partitioning and contention for shared capacity caused by concurrent failures. In this paper, we show that in a network designed to withstand single-link failure, the service availability, in the presence of double link failures, depends on the designed ERP scheme, i.e., the RPL placement as well as the selection of ring hierarchy. Therefore, we present a study for characterizing service outages and propose a design method which strikes a balance between capacity requirement and service availability (i.e., the number of service outages resulting from concurrent failures). We observe that through effective design, remarkable reduction in service outages is obtained at a modest increase in capacity deployment.

Published in:

Lightwave Technology, Journal of  (Volume:31 ,  Issue: 2 )