By Topic

Network-Compressive Coding for Wireless Sensors with Correlated Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ketan Rajawat ; Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA ; Alfonso Cano ; Georgios B. Giannakis

A network-compressive transmission protocol is developed in which correlated sensor observations belonging to a finite alphabet are linearly combined as they traverse the network on their way to a sink node. Statistical dependencies are modeled using factor graphs. The sum-product algorithm is run under different modeling assumptions to estimate the maximum a posteriori set of observations given the compressed measurements at the sink node. Error exponents are derived for cyclic and acyclic factor graphs using the method of types, showing that observations can be recovered with arbitrarily low probability of error as the network size grows. Simulated tests corroborate the theoretical claims.

Published in:

IEEE Transactions on Wireless Communications  (Volume:11 ,  Issue: 12 )