By Topic

Increasing the accuracy of software development effort estimation using projects clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Khatibi Bardsiri, V. ; Dept. of Software Eng., Univ. Teknol. Malaysia (UTM), Skudai, Malaysia ; Jawawi, D.N.A. ; Hashim, S.Z.M. ; Khatibi, E.

Software development effort is one of the most important metrics that must be correctly estimated in software projects. Analogy-based estimation (ABE) and artificial neural networks (ANN) are the most popular methods used widely in this field. These methods suffer from inconsistent and irrelevant projects that exist in the software project datasets. In this paper, a new hybrid method is proposed to increase the accuracy of development effort estimation based on the combination of fuzzy clustering, ABE and ANN methods. In the proposed method, the effect of irrelevant and inconsistent projects on estimates is decreased by designing a new framework, in which all the projects are clustered. The quality of training in ANN and the consistency of historical data in ABE are improved using the proposed framework. Two large and real datasets are utilised in order to evaluate the performance of the proposed method and the obtained results are compared to eight other estimation methods. The promising results showed that the proposed method outperformed the other methods on both datasets. The performance metrics of mean magnitude of relative error (MMRE) and the percentage of the prediction (PRED) (0.25) have been improved by average of 51 and 127% in the first dataset, as well as 52 and 94% in the second dataset.

Published in:

Software, IET  (Volume:6 ,  Issue: 6 )