By Topic

Energy-efficiency of all-optical transport through time-driven switching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
F. Musumeci ; Department of Electronic and Information, Politecnico di Milano, via Ponzio 34/5, 20133 Milano, Italy ; M. Tornatore ; G. Fontana ; M. Riunno
more authors

Decreasing the Internet power consumption is a challenging issue. Optical transport networks employing the wavelength division multiplexing (WDM) technique have been identified as energy efficient solutions to face this issue, considering the expected high increase of Internet traffic. The authors study the energy efficiency of a recently-proposed switching technique for transport networks, the time-driven-switching (TDS), in which time-coordination of network elements is exploited to achieve `sub-lambda` granularity in optical signal switching directly in the optical domain. In order to achieve the fast switching time required by TDS, semi-conductor optical amplifier-based optical switches are exploited. The authors discuss the properties, in terms of the energy efficiency, of a TDS transport network, focusing on the energy requirements of the TDS optical switches. The authors provide a qualitative description of the main contributors to energy consumption in a TDS network. The authors then develop an integer linear programming formulation, in which the physical impairments impact over optical signals is also considered. Power consumption over realistic case study networks for the TDS case is compared to the power consumption for the classical IP over WDM architecture, and in some cases TDS is demonstrated to save more than 55` of power consumption with respect to competing architectures.

Published in:

IET Optoelectronics  (Volume:6 ,  Issue: 4 )