By Topic

Reliable location-aware routing protocol for mobile wireless sensor network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
L. Karim ; School of Computer Science, University of Guelph, Canada ; N. Nasser

Designing energy efficient and reliable routing protocols for mobility centric applications of wireless sensor network (WSN) such as wildlife monitoring, battlefield surveillance and health monitoring is a great challenge since topology of the network changes frequently. Existing cluster-based mobile routing protocols such as LEACH-Mobile, LEACH-Mobile-Enhanced and CBR-Mobile consider only the energy efficiency of the sensor nodes. However, reliability of routing protocols by incorporating fault tolerance scheme is significantly important to identify the failure of data link and sensor nodes and recover the transmission path. Most existing mobile routing protocols are not designed as fault tolerant. These protocols allocate extra timeslots using time division multiple access (TDMA) scheme to accommodate nodes that enter a cluster because of mobility and thus, increases end-to-end delay. Moreover, existing mobile routing protocols are not location aware and assume that sensor nodes know their coordinates. In this study the authors, we propose a location-aware and fault tolerant clustering protocol for mobile WSN (LFCP-MWSN) that is not only energy efficient but also reliable. LFCP-MWSN also incorporates a simple range free approach to localise sensor nodes during cluster formation and every time a sensor moves into another cluster. Simulation results show that LFCP-MWSN protocol has about 25-30% less network energy consumptions and slightly less end-to-end data transmission delay than the existing LEACH-Mobile and LEACH-Mobile-Enhanced protocols.

Published in:

IET Communications  (Volume:6 ,  Issue: 14 )