By Topic

Network lifetime maximising distributed forwarding strategies in ad hoc wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
B. Panigrahi ; Electrical Engineering Department, IIT, Delhi, India ; S. De ; B. S. Panda ; J. -D. Lan Sun Luk

The authors propose three variants of distributed and stateless forwarding strategies for wireless sensor networks, namely greedy minimum energy consumption forwarding protocol (GMFP), lifetime maximising GMFP (LM-GMFP) and variance minimising GMFP (VAR-GMFP), which aim at maximising the network lifetime while achieving a high forwarding success rate. GMFP selects a forwarding node that minimises per-packet energy consumption while maximising the forwarding progress. LM-GMFP extends the GMFP algorithm by also taking into account the remaining energy at the prospective one-hop forwarding nodes. In VAR-GMFP, on the other hand, the packet is forwarded to the next node that ensures a locally high mean and low variance of nodal remaining energy. Through simple probabilistic analysis the authors prove the intuition behind the optimum forwarding node selection for network lifetime maximisation. They then model the lifetime maximisation of a sensor network as an optimisation problem and compare the practical protocol-dependent network lifetime with the theoretical upper bound. Through extensive simulations the author demonstrate that the proposed protocols outperform the existing energy-aware protocols in terms of network lifetime and end-to-end delay.

Published in:

IET Communications  (Volume:6 ,  Issue: 14 )