By Topic

Evaluation of correlation functions and design of minimum mean squared error equaliser for a high-density magnetic recording channel with partial erasure effect

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kao, T.-S. ; Dept. of Electron. Eng., Hwa-Hsia Inst. of Technol., Taipei, Taiwan ; Ku, H.-H.

In a high-density magnetic recording channel, non-linear effects such as transition shift and partial erasure arise, and these effects limit detector performance. The transition shift can be precompensated by using an appropriate write current; however, partial erasure still degrades detector performance. In this study, the authors obtained the correlation functions of the stored data in the presence of partial erasure under the assumption that the transition shift has been precompensated. The correlation functions are applied in designing a minimum mean squared error equaliser for both the linear partial response and the non-linear partial response, and the corresponding partial response maximum likelihood (PRML) sequence detector, realised by the Viterbi decoder, is also examined. Computer simulations indicate that the mean squared error of the proposed equaliser can be improved and the bit error rate of the PRML sequence detector is also reduced as compared with the conventional one in the presence of partial erasure.

Published in:

Signal Processing, IET  (Volume:6 ,  Issue: 6 )