By Topic

On the Stability and Control of Continuous-Time TSK Fuzzy Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saeed Jafarzadeh ; Computer and Electrical Engineering and Conputer Science Department, California State University Bakersfield, Bakersfield, CA, USA ; M. Sami Fadali

This paper introduces a new stability test and control design methodology for type-1 and type-2 continuous-time (CT) Takagi-Sugeno-Kang systems. Unlike methods based on a common Lyapunov function, our stability results apply for systems with unstable consequents, and our controllers can be designed for systems with unstabilizable consequents. The stability results are derived using the comparison principle with a discontinuous function and the upper right-hand derivative. The control results include CT fuzzy proportional controllers and fuzzy proportional-integral controllers that can be obtained by solving linear matrix inequalities. We provide several examples to demonstrate our stability testing and controller design and compare our results to available methods in the literature. Our results compare favorably with results available in the literature and provide stability tests and controllers where earlier approaches fail.

Published in:

IEEE Transactions on Cybernetics  (Volume:43 ,  Issue: 3 )