Cart (Loading....) | Create Account
Close category search window
 

Neutron Emission Characteristics of NX-3 Plasma Focus Device: Speed Factor as the Guiding Rule for Yield Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Verma, R. ; Nat. Inst. of Educ., Nanyang Technol. Univ., Singapore, Singapore ; Rawat, R.S. ; Lee, P. ; Tan, A.T.L.
more authors

This paper reports the results of characterization and optimization experiments carried out on a newly developed NX-3 dense plasma focus device (20 kJ at 20 kV, a quarter time period of ~ 3 μs, and 10 kJ/600 kA at 14 kV) at the Plasma Radiation Source Laboratory, NIE, Nanyang Technological University, Singapore. Initial experiments were conducted with an electrode assembly configuration having anode radius and length of 20 and 160 mm, respectively, for detailed neutron emission characterization of NX-3 device followed by further optimization of neutron yield using various other electrode configurations designed using the Lee Code. At ≥10-kJ operation, the average neutron yield on the order of 109 neutrons/pulse in 4πsr was obtained for the deuterium filling gas pressure range of 6-8 mbar. The neutron yield of ~ 4.6 ×109 neutrons/pulse at 10 kJ/6 mbar is the highest ever reported for a device with the same stored energy. The neutron anisotropy measurements point to the beam-target mechanism as the dominant neutron production mechanism for NX-3 plasma focus device. Further optimization of neutron yield in NX-3 was achieved with the peak average neutron yield being enhanced from ~ (2.38 ±0.31) ×109 neutrons/shot for the initial electrode configuration to about ~ (3.40 ±0.43) ×109 neutrons/shot for the electrode configuration with anode radius and length of 26 and 140 mm, respectively. The analysis of neutron yield results for various electrode assembly configurations demonstrates the speed factor as a key optimization tool for maximization of neutron yield.

Published in:

Plasma Science, IEEE Transactions on  (Volume:40 ,  Issue: 12 )

Date of Publication:

Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.