By Topic

Optimization of Subcell Interconnection for Multijunction Solar Cells Using Switching Power Converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alam, M.K. ; Univ. of Utah, Salt Lake City, UT, USA ; Faisal Khan ; Imtiaz, A.M.

A multijunction solar cell can extract higher solar energy compared to a single junction cell by splitting the solar spectrum. Although extensive research on solar cell efficiency enhancement is in place, limited research materials are available to identify the optimum interconnection of multijunction solar subcells using power electronic circuits. Multijunction solar cells could be grouped into two main categories: vertical multijunction (VMJ) solar cells and lateral multijunction (LMJ) solar cells. In this paper, a detailed study to identify the optimum interconnection method for various multijunction solar cells has been conducted. The authors believe that the conducted research in this area is very limited, and an effective power electronic circuit could substantially improve the efficiency and utilization of a photovoltaic (PV) power system constructed from multijunction solar cells. A multiple input dc-to-dc boost converter has been used to demonstrate the advantage of the proposed interconnection technique. In order to ensure maximum power point (MPP) operation, a particle swarm optimization (PSO) algorithm has been applied needing only one MPP control for multiple solar modules resulting in cost and complexity reduction. The PSO algorithm has the potential to track the global maxima of the system even under complex illumination situations. A complete functional system with the implementation of the proposed algorithm has been presented in this paper with relevant experimental results.

Published in:

Sustainable Energy, IEEE Transactions on  (Volume:4 ,  Issue: 2 )