By Topic

Energy-Efficient Full Diversity Collaborative Unitary Space-Time Block Code Designs via Unique Factorization of Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dong Xia ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, ON, Canada ; Jian-Kang Zhang ; Dumitrescu, S.

In this paper, a novel concept called a uniquely factorable constellation pair (UFCP) is proposed for the systematic design of a noncoherent full diversity collaborative unitary space-time block code by normalizing two Alamouti codes for a wireless communication system having two transmitter antennas and a single receiver antenna. It is proved that such a unitary UFCP code assures the unique identification of both channel coefficients and transmitted signals in a noise-free case as well as full diversity for the noncoherent maximum likelihood receiver in a noise case. To further improve error performance, an optimal unitary UFCP code is designed by appropriately and uniquely factorizing a pair of energy-efficient cross quadrature amplitude modulation (QAM) constellations to maximize the coding gain subject to a transmission bit rate constraint. After a deep investigation of the fractional coding gain function, a technical approach developed in this paper to maximizing the coding gain is to carefully design an energy scale to compress the first three largest energy points in the corner of the QAM constellations in the denominator of the objective as well as carefully design a constellation triple forming two UFCPs, with one collaborating with the other two so as to make the accumulated minimum Euclidean distance along the two transmitter antennas in the numerator of the objective as large as possible, and at the same time, to avoid as many corner points of the QAM constellations with the largest energy as possible to achieve the minimum of the numerator. In other words, the optimal coding gain is attained by intelligent constellations collaboration and efficient energy compression. Computer simulations demonstrate that error performance of the optimal unitary UFCP code presented in this paper outperforms those of the differential code and the signal-to-noise-ratio-efficient training code.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 3 )