By Topic

A Computational Study of Representations in Genetic Programming to Evolve Dispatching Rules for the Job Shop Scheduling Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Su Nguyen ; Evolutionary Comput. Res. Group, Victoria Univ. of Wellington, Wellington, New Zealand ; Mengjie Zhang ; Johnston, M. ; Kay Chen Tan

Designing effective dispatching rules is an important factor for many manufacturing systems. However, this time-consuming process has been performed manually for a very long time. Recently, some machine learning approaches have been proposed to support this task. In this paper, we investigate the use of genetic programming for automatically discovering new dispatching rules for the single objective job shop scheduling problem (JSP). Different representations of the dispatching rules in the literature are newly proposed in this paper and are compared and analysed. Experimental results show that the representation that integrates system and machine attributes can improve the quality of the evolved rules. Analysis of the evolved rules also provides useful knowledge about how these rules can effectively solve JSP.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:17 ,  Issue: 5 )