By Topic

Max-Min Fairness Linear Transceiver Design Problem for a Multi-User SIMO Interference Channel is Polynomial Time Solvable

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ya-Feng Liu ; State Key Lab. of Sci. & Eng. Comput., Acad. of Math. & Syst. Sci., Beijing, China ; Mingyi Hong ; Yu-Hong Dai

Consider the linear transceiver design problem for a multi-user single-input multi-output (SIMO) interference channel. Assuming perfect channel knowledge, we formulate this problem as one of maximizing the minimum signal to interference plus noise ratio (SINR) among all the users, subject to individual power constraints at each transmitter. We prove in this letter that the max-min fairness linear transceiver design problem for the SIMO interference channel can be solved to global optimality in polynomial time. We further propose a low-complexity inexact cyclic coordinate ascent algorithm (ICCAA) to solve this problem. Numerical simulations show the proposed algorithm can efficiently find the global optimal solution of the considered problem.

Published in:

Signal Processing Letters, IEEE  (Volume:20 ,  Issue: 1 )